Key Disaster Types and Related Injury Conditions

Disaster Types and Pediatric Considerations
The table below highlights the types, symptoms, and treatment of common injuries resulting from the following disasters:

Natural Disasters

- Fire
- Flood
- Hurricane/Tornadoes
- Earthquake
- Infectious Epidemic

Manmade Disasters (SEE Terrorism Tools Section)
Chemical, Biological, Radiological, Nuclear, high-yield explosives (CBRNE) + F

Chemical
- Nerve Agents
- Toxic Industrial Chemicals
- Choking Agents
- Vesicants
- Irritants
- Cyanides

Biological
- Class A Biological Agents
- Class B Biological Agents

Radiological and Nuclear
- Ionizing
- Alpha
- Beta
- Gamma/x-rays
- Neutrons

Explosive
- High Order
- Low Order

Firearms
<table>
<thead>
<tr>
<th>Disasters Type</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Disasters</td>
<td>Fire</td>
<td>Burn management</td>
</tr>
</tbody>
</table>

- See wildfire acute pediatric care support from UCSF PEHSU: http://www.ucsf.edu/ucpehsu/Wildfires_Acute_Phase.pdf
- See Environmental Health Hazards for Children in the Aftermath of Wildfires: http://www.ucsf.edu/ucpehsu/Wildfires_Recovery_Phase.pdf
- Larger skin to body surface area ratio
- Smaller airways increase risk of airway compromise with smoke inhalation
- Different body proportions than adult result in alterations of “rule of 9’s” for fluid resuscitation
- Post-Traumatic Stress Disorder (PTSD) increased risk in children

Body Surface Percentages

[Image of body surface percentages diagram]
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| **Natural Disasters** | Flood | ▪ Drowning risk increased in non-swimmers
▪ Increase in respiratory infections from exposure to elements
▪ Communicable disease
 ▪ GI Infections from waterborne and food-borne illness
 ▪ Vector borne illness from stagnant water (Mosquitoes)
 ▪ Wound infections from dirty water
▪ Hypothermia: Children especially at risk
▪ Loss of shelter
▪ Separation from family
▪ Psychological damage: Children at increased risk for PTSD |
| **Hurricane/Tornadoes** | | ▪ Risks similar to flood
▪ Additional risks
 ▪ Damage from blunt trauma due to flying debris
 ▪ Avoid windows during event |
| **Earthquake** | | ▪ Vulnerable to trauma: Larger head, less circulatory volume reserves
▪ Psychologically more prone to PTSD |
| **Infectious Epidemic** | | ▪ Children more vulnerable due to immature immune system
▪ Less fluid reserves in cases of infectious vomiting/diarrhea
▪ Children more likely to become infected due to poorer hygiene and more hand-to-mouth contact |
| **Manmade Disasters: CBRNE** | Nerve Agents | ▪ Types of agents
 ▪ Sarin (ex. 1995 Japanese subway attack)
 ▪ VX
 ▪ Tabun
 ▪ Soman
▪ Liquid or gas
▪ Routes: inhaled or absorption through skin (some healthcare workers in the Japanese subway Sarin attack were off-gassed by liquid nerve agent from victim’s clothing; this shows the important of decontamination of victims with unknown exposures and working in well-ventilated space)
▪ Mechanism
 ▪ Acts of blocking enzyme (Acetylcholine esterase) that breaks down acetylcholine (Ach) at neuromuscular junction. Leads to over-stimulation of nervous system |
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve Agents</td>
<td></td>
<td>▪ Symptoms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▷ Muscarinic receptor effects: “SLUDGEM” symptoms (Salivation, Lacrimation, Urination, Defecation, GI upset, Emesis, Miosis (pupil constriction)) – 90% of receptors are this type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▷ Nicotinic effects: Muscle fasciculation (twitching), seizure, weakness, apnea: 10% of receptors are this type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Treatment: use antidotes if SLUDGEM symptoms present (do not sue antidotes if symptoms are only constricted pupils/mild rhinorrhea)</td>
</tr>
</tbody>
</table>

Antidotes

Antropine

- Atropine works by blocking post-synaptic receptor from Ach. Reverses SLUDGEM symptoms
- Pediatric dose: 0.05 mg/kg IV/IM/IO repeat q 5-10 minutes until SLUDGEM symptoms start improving
- If out of atropine, alternatives can be used
 - Glycopyrrolate
 - Anti-sialagogue
 - Parasympatholytic
 - Does not cross blood-brain barrier, therefore not helpful with CNS effects of agent
 - Scopolamine
 - Causes deep sedation as side effect

2-PAM (a.k.a. pralidoxime)

- 2-PAM acts by removing nerve agent from Ach-esterase.
- “Aging” is time it takes for nerve agent to bind covalently (permanently) with Ach-esterase. Different agents have different aging times that range from seconds to hours. After an agent’s toxic effects
- Pediatric dose: 50 mg/kg (2g max/hr) IV or IM
- Autoinjectors (Mark I): dose is 2mg atropine, 600 mg 2-PAM (use one kit in kids 3-7 yrs, 2 kits for > 8 yrs)

Supportive Treatments

- Respiratory support
 - Beta agonists (albuterol)
Disasters Specific Type Explanation

Nerve Agents

- Oxygen
- Ventilatory support: Expect high pressures due to airway resistance (50-70 cm H2O)
 - Seizure Control
 - Benzodiazepines are drug class of choice
 - Midazolam 0.15-0.2 mg/kg IM or IV (max 5 mg/dose)
 - less apnea if used IM (slower absorption)
 - Diazepam 0.05-0.3 mg/kg/dose PR or IV
 - Lorazepam 0.05-0.2 mg/kg IV or IM

Pediatric Consideration
- Small mass means smaller doses are lethal
- Higher respiratory rate: Higher dose received
- Smaller airways, larger tongue: Increased risk of obstruction from bronchorrhea
- Smaller intravascular volume: Increased effects from V/D losses
- Immature blood-brain barrier: Increased absorption of agent into CNS
- Less mature metabolic systems in place for natural detox of agents (Paraoxonase: Enzyme responsible for breakdown of nerve agents). At birth levels are ½ those of adults

Manmade Disasters: Toxic Types

CBRNE Industrial Chemicals

- Chlorine
 - Heavier than air, rapidly disperses
 - Bleach-like odor
 - Liquid or gas
 - Inhaled, ingested or absorbed through skin
 - Skin burns, coughing, nose/throat irritation, burns eyes, dizziness, congestion, tissue swelling if ingested, lung damage
 - Symptoms usually appear within minutes of exposure

- Hydrogen cyanide
 - Rapidly disperses
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Toxic | Industrial Chemicals | - Bitter almond odor
- Liquid or gas
- Inhaled, ingested or absorbed through skin
- Skin burns, coughing, nose/throat irritation, blindness, lung damage |

Pediatric Considerations:
- Agents heavier than air remain lower to the ground where children tend to be. Accumulation of these agents leads to children being disproportionately affected
- Less pulmonary reserve, higher respiratory rate makes children more severely affected
- Thinner skin leads to higher absorption of agents

<table>
<thead>
<tr>
<th>Manmade Disasters:</th>
<th>Choking Agents Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBRNE Chemical</td>
<td>Phosgene</td>
</tr>
</tbody>
</table>
| | - Heavier than air, rapidly disperse
- Mown hay odor |
| | Chemical |
| | - Solid, liquid or gas
- Inhaled
- Airway irritation, pulmonary edema, coughing occurs immediately on exposure |
| | Chlorine |
| | - Heavier than air, rapidly disperse
- Bleach odor
- Liquid or gas
- Inhaled, ingested or absorbed through skin
- Skin burns, coughing, nose/throat irritation, burning eyes, dizziness, congestion, tissue swelling if ingested, lung damage
- Symptoms usually appear within minutes of exposure |

Pediatric Consideration
- Agents heavier than air remain lower to the ground where children tend to be. Accumulation of these agents leads to children being disproportionately affected
- Less pulmonary reserve, higher respiratory rate makes children more severely affected
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin</td>
<td>Industrial Chemicals</td>
<td>Thinner skin leads to higher absorption of agents</td>
</tr>
</tbody>
</table>

Manmade Disasters:
- **CBRNE Chemicals**
 - **Vesicants - Types**
 - Mustard
 - Lewisite
 - Phosgene

 Mechanism of action
 - Burns skin
 - Damages lungs
 - Damages eyes
 - Suppresses bone marrow (3-5 days post exposure)

 Treatments
 - Flush skin/eyes with water
 - Topical antibiotics to skin
 - Mydriatics (dilates eyes)
 - Oxygen
 - Bronchodilators
 - Ventilatory support
 - Antidote for Lewisite: BAL (British Anti-Lewisite)- chelates arsenic component

 Pediatric Considerations
 - Thinner skin
 - Larger body surface area to volume ratio in children vs. adults: Higher dose received

<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritants</td>
<td>CBRNE</td>
<td></td>
</tr>
</tbody>
</table>

Pediatric Considerations
- Thinner skin
- Larger body surface area to volume ratio in children vs. adults: Higher dose received
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- Cyanogen chloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Volatility: rapidly disperse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Odor: bitter almonds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mechanism: interrupts electron transport chain in mitochondria, depleting body of energy on a cellular level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Symptoms: Gasping for air, frothing, vomiting, loss of consciousness, death (occurs within seconds to minutes of exposure)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If breathing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Remove clothing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Move to well-ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IV Fluids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If not breathing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Remove clothing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Move to well-ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Advanced airway (intubated or bag-valve mask ventilation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Antidotes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Amyl nitrite pearls: Bag ventilate pearls into patient after crushing into a gauze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sodium nitrite: 0.2-0.3 mg/kg IV (max 300mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sodium thiosulfate: 1.65 mg/kg U IV</td>
</tr>
<tr>
<td>Manmade Disasters: CBRNE</td>
<td>Class A Biological Agents</td>
<td>- Anthrax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Inhalational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Most likely form of terrorism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No person-to-person spread from respiratory droplets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flu-like illness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CXR with wide mediastinum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Treatment: Ciprofloxacin, doxycycline (amoxicillin if susceptible) x 60 days</td>
</tr>
<tr>
<td>Disasters</td>
<td>Specific Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Class A Biological Agents</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Vaccine available
- Treat exposures with 7-10 days of oral antibiotics while monitoring for symptoms and vaccination
- Skin infection
- Gastrointestinal

- **Plague**
 - Pneumonic
 - Most likely form of intentionally spread disease
 - Person-to-person spread via droplets possible
 - Symptoms: Cough, hemoptysis, sepsis, multi-organ failure, disseminated intravascular coagulation (DIC)
 - Treatment: Streptomycin, gentamicin
 - Septicemic
 - Symptoms: Fevers, low blood pressure and shock

- **Tularemia**
 - Pneumonic
 - Symptoms: Fever, myalgias, headache, cough → rapidly progressing respiratory failure
 - Treatment: Streptomycin
 - No person-to-person transmission via droplets
 - Septicemic
 - Symptoms: Fever, nausea, vomiting, diarrhea, hepatosplenomegaly, sepsis, multi-organ failure
 - Treatment: Streptomycin
 - No person-to-person transmission via droplets

- **Ulceroglandular**: most common form of natural disease
 - Septicemic

- **Smallpox**
 - Symptoms: Malaise, fever, vomiting, headache, backache followed by typical rash (centrifugal: face/arms/legs → trunk)
 - Treatment: None proven, anti-virals, immunoglobulin experimental
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manmade</td>
<td>Class A</td>
<td>Prevention of spread: “Ring” vaccination recommended</td>
</tr>
<tr>
<td>Disasters:</td>
<td>Biological</td>
<td></td>
</tr>
<tr>
<td>CBRNE</td>
<td>Agents</td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Hemorrhagic fever</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Symptoms: Fever, rash, hypotension, bleeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Treatment: Supportive, experimental: ribavirin (anti-viral)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Very infectious: Double glove, gown mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Botulism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Mechanism: Toxin inhibits release of acetylcholine from presynaptic terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Types: Infant botulism: baby ingest pre-formed toxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Food borne: Spore present in poorly canned foods ingested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Wound: Spores/toxin directly invade open wound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Airborne: Not naturally occurring; would be presumed to be terrorism if occurred. Easily deactivated by water, process plants, and heat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Symptoms: Descending weakness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Treatment: Botulinum anti-toxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Supportive Care: Ventilation</td>
</tr>
<tr>
<td></td>
<td>Class B</td>
<td>Less easily spread, lower morbidity/mortality</td>
</tr>
<tr>
<td>Biological</td>
<td>Agents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Brucellosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Viral encephalitides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Ricin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Staph enterotoxin B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Food/water borne pathogens</td>
</tr>
<tr>
<td>Manmade</td>
<td>Types of Radiation</td>
<td></td>
</tr>
<tr>
<td>Disasters:</td>
<td>Radiation</td>
<td></td>
</tr>
<tr>
<td>CBRNE</td>
<td>Nuclear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Ionizing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ High frequency radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Does damage to biological tissues (DNA mutation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Alpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ 2 protons, 1 neutron, usually naturally occurring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Penetrates only depth of piece of paper, so external exposure not harmful</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Damages if ingested or inhaled (polonium on Russian journalist in 2007)</td>
</tr>
<tr>
<td>Disasters</td>
<td>Specific Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Manmade Disasters: CBRNE | Types of Radiation | ▪ Beta
▪ Comes from radionuclides used in medicine, or byproduct of nuclear reactor
▪ Gamma/x-rays
▪ Emitted from radioactive particles
▪ Penetrates deeply through body tissues
▪ Neutrons
▪ Powerful, rare
▪ Emitted after nuclear detonation |
| Radiation/Nuclear | Sources of Radiation | ▪ Intentional
▪ “Dirty bomb”: radioactive dispersal device
▪ Damage of nuclear facility releasing nuclear waste into environment
▪ Detonation of nuclear weapon
▪ Unintentional
▪ Power plan disaster (Chernobyl, Three-Mile Island) |
| | Mechanisms of Action | ▪ External
▪ Exposure
▪ Contamination
▪ Internal
▪ Ingestion
▪ Inhalation |
| | Effects of radiation | ▪ Short term (days → weeks post exposure)
▪ Nausea/vomiting/diarrhea
▪ Bone marrow suppression
▪ Burning of skin
▪ Long term (weeks → months/years post exposure)
▪ Cancer risk
▪ Psychological injury |
| | Treatments/Management | ▪ Issue protective clothing and dosimeters to staff
▪ Control ventilation
▪ Minimize time of exposure: evacuate early
▪ Maximize shielding
▪ Maximize distance from epicenter of release of radioactive material
▪ Decontamination those exposed
▪ Strip naked |
<table>
<thead>
<tr>
<th>Disasters Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>❖ Soap/water</td>
</tr>
<tr>
<td></td>
<td>❖ Debride if radioactive material embedded in skin</td>
</tr>
<tr>
<td></td>
<td>❖ Perform surgery, in needed, within 48 hrs of exposure before bone marrow suppression ensues and impairs immunity and healing ability</td>
</tr>
<tr>
<td></td>
<td>❖ Potassium iodide (KI)</td>
</tr>
<tr>
<td></td>
<td>❖ Use in exposure to radioiodines (common with nuclear reactor incidents)</td>
</tr>
<tr>
<td></td>
<td>❖ Use ASAP after exposure or expected exposure</td>
</tr>
<tr>
<td></td>
<td>❖ Floods thyroid with non-radioactive iodine protecting from thyroid cancer</td>
</tr>
<tr>
<td></td>
<td>❖ Protection lasts 24 hrs, so repeated dosing may be needed if ongoing exposure occurs</td>
</tr>
</tbody>
</table>

Potassium Iodide Dosing

Please pay attention to the number of teaspoonfuls recommended when using a potassium iodide 65 mg tablet as it is different from the number of teaspoonfuls given when using a potassium iodide 130 mg tablet.

Tablet: Recommended doses of KI for children and infants with predicted thyroid radioactivity exposures equal to or greater than 5 cGy, using 65 mg tablet preparations.

<table>
<thead>
<tr>
<th>If your child is:</th>
<th>Give child this amount of potassium iodide (KI) *</th>
<th>Which is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 4 and 12 years old</td>
<td>8 teaspoonfuls (NOT tablespoonfuls)</td>
<td>65 mg of potassium iodide (KI)</td>
</tr>
<tr>
<td>Over 1 month through 3 years</td>
<td>4 teaspoonfuls (NOT tablespoonfuls)</td>
<td>32.5 mg of potassium iodide (KI)</td>
</tr>
<tr>
<td>An infant from birth through 1 month</td>
<td>2 teaspoonfuls (NOT tablespoonfuls)</td>
<td>16.25 mg of potassium iodide (KI)</td>
</tr>
</tbody>
</table>

Pediatric Considerations

- Higher breathing rates: Higher dose inhaled
- Fallout settles to ground where children are: Higher
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manmade Explosives</td>
<td></td>
<td>exposure</td>
</tr>
<tr>
<td>Disasters: CBRNE</td>
<td></td>
<td>- Radioactive iodine collects in human and cow milk, which children are exposed to in proportionally higher amounts due to diet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Greater number of dividing cells as they grow makes for increased risk of mutation of DNA</td>
</tr>
<tr>
<td>Explosive</td>
<td></td>
<td>- Mental health vulnerability increased compared with adults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Decontamination of children is challenging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Locations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mortality: Structural collapse > confined space > outdoor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Explosion faster than speed of sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Creates pressure wave that damages organs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Low order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Explosion slower than sound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Damage of tissues by burning</td>
</tr>
<tr>
<td>Explosives can be attached to other types of weapons (bio, nuclear, chemical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Order Injuries</td>
<td>Primary – Damage caused by pressure wave (detonation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Affects air-fluid interfacing organs most commonly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ears</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tympanic membranes (TM’s) rupture at relatively low pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If TM’s intact, less likely to have other severe primary blast injury</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hearing loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tinnitus</td>
</tr>
<tr>
<td></td>
<td>Lungs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Most common cause of mortality in high order explosions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hemo/pneumothorax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pulmonary contusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Systematic air embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pneumomediastinum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Symptoms</td>
</tr>
<tr>
<td>Disasters Type</td>
<td>Specific Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Manmade Disasters | High Order Injuries | o Respiratory distress
| CBRNE Explosive | o Cough
| | o Hemoptysis
| | o Hypoxemia
| | Intestines
| | ▪ Perforated viscus can present delayed with abdominal pain
| | Brain
| | ▪ Can prevent with headache, alteration of mental status or appear like behavioral problem
| | ▪ Usually occurs when patient was in close proximity to epicenter of blast
| | Eye
| | ▪ Presents with changes in vision, eye pain, blurry vision
| Secondary – Damage caused by shrapnel striking body | Penetrating Injury > blunt injury
| | ▪ Lacerations (check front/back of patient
| | ▪ Extremity amputation: Poor prognosis
| | ▪ Eye injury: 15 percent
| Tertiary – Damage caused by victim’s body striking object | Blunt injury > penetrating injury
| | ▪ Fractures
| | ▪ Contusions
| Quaternary: Any other injury from explosive burns | Burns
| | ▪ Assess percentage burn surface area (BSA) burned with second/third degree burns
| | ▪ Rule of Nines
| | ▪ Pediatric victim’s palm: One percent BS
| | Smoke Inhalation
| | ▪ Look for signs of upper airway burn (singed nasal hair, soot around perioral area
| | ▪ Building collapse
| | ▪ Very high mortality
| | Crush injury
| | ▪ Risk of acute renal failure (ARF
| | ▪ Risk of electrolyte abnormalities from ARF
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Manmade Disasters: CBRNE Explosive | High Order Injuries | Compartment syndrome
 - Assess compartments in extremity crush injury, if bleeding into compartments
 - Pressure >30 mm Hg: Likely need for fasciotomy

 A note on Compartment Syndrome
 Pressure assessment may not be possible. Other options for assessing compartment syndrome include:
 1. Pain in extremity disproportionate to injury with acute or passive movement of hand or foot
 2. Loss of distal pulses
 3. Pallor
 4. Paresthesia of limb
 - Exacerbation of existing medical condition |
| Low Order Injuries | Caused by burning of layers of tissue (deflagration) | Burns
 - Smoke inhalation
 - Penetrating trauma
 - Blunt trauma |
| Treatment of Injuries | Primary Ears | Tympanic membranes (TM’s) rupture: no specific treatment |
| | Lungs | * Any pulmonary injury may require advanced airway or mechanical ventilation if severe enough
 - Hemo/pneumothorax: Chest tube, oxygen
 - Pulmonary contusion: Oxygen, +/- chest tube
 - Systemic air embolism
 - Pneumomediastinum: Oxygen |
| | Intestines | Perforated viscous: antibiotics, surgical repair perforated intestine |
| | Brain | Monitor intracranial pressure
 - Elevate head of bed
 - Maintain normal pCO2
 - Neurosurgical release of intracranial bleed if needed/possible |
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| **Eye** | | - Globe rupture: Antibiotics, ophtho consultation
- Hyphema: Ophtho consultation
- Retinal detachment: Ophtho consultation |
| **Secondary: Penetrating injury > blunt injury** | | - Pneumo/hemothorax: Chest tube, Oxygen
- Treat lacerations as dirty wounds
 - Control bleeding
 - Tetanus
 - Delayed closure if possible
 - Consider retained foreign body before closure
- Extremity amputation: Control bleeding, antibiotics, orthopedic consultation |
| **Tertiary: Damage caused by victim’s body striking object** | | - Blunt > penetrating injury
 - Fractures: Stabilize by splinting unless neurovascular compromise
 - Contusions – r/o internal bleeding
 - Internal organ/viscous damage |
| **Quaternary: Any other injury from explosive** | | - Burns
 - Stop burning process
 - Evaluate for circumferential burns which could impede blood flow to an area
 - Topical antibiotics with non-stick dressing
 - Fluid resuscitation
 - Parkland formula based on estimated BSA burned
 - # of ml = 4 x % of body surface area burned x weight (kg)
 - Half of the volume administered over the first 8 hours
 - Remaining half of volume administered over the following 16 hours
 - Intubate early if signs of upper airway obstruction are present
 - Administer pain medication |
<table>
<thead>
<tr>
<th>Disasters</th>
<th>Specific Type</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| **Manmade Disasters:** CBRNE Explosive | Treatment of Injuries | Smoke inhalation
| | | o Oxygen
| | | o Beta agonist trial
| | | o Check CO level
| | | o Maintain airway if signs of airway burn (singed nose hair, soot periorally, carbonaceous sputum, hoarseness, noisy breathing)
| | | Building collapse
| | | Crush injury
| | | o IV hydrate
| | | o Watch for hyperkalemia from intracellular release
| | | o Mannitol or Lasix once UOP established
| | | o Assess kidney function/need for dialysis
| | | Exacerbation of existing medical condition (ex. Asthma attack triggered by smoke)
| | Compartment Syndrome | Compartment Syndrome
| | | o Assess compartments in extremity crush injury, if bleeding into compartments
| | | o Pressure > 30 mm Hg: Likely need for fasciotomy

A note on Compartment Syndrome
Pressure assessment may not be possible. Other options for assessing compartment syndrome include:
1. Pain in extremity disproportionate to injury with acute or passive movement of hand or foot
2. Loss of distal pulses
3. Pallor
4. Paresthesia of limb

Pediatric Vulnerabilities	Less circulating volume: Increased risk of exsanguinations
	Less protection of internal organs b/c less protection from ribs
	Larger head: More likely head trauma
	Psychological
BLAST INJURY/TRAUMA

http://www.bt.cdc.gov/masscasualties/explosions.asp
http://www.bt.cdc.gov/masscasualties/blastessentials.asp

Key points:

The surge created by an explosion (industrial, accidental, IED, VBIED, etc) can be rapid and devastating. In addition to preparing for a very rapid surge of patients, the following incident specific considerations are vital:

- Be cautious of unexploded ordinance (UXO) in/on patients

- As with any other possible/confirmed terrorism event, scene safety is paramount

- In addition to injury/trauma, patient may have partial to complete hearing loss & not readily follow commands

Blast Injuries: Essential Facts

Key Concepts

- Bombs and explosions can cause unique patterns of injury seldom seen outside combat
- Expect half of all initial casualties to seek medical care over a one-hour period
- Most severely injured arrive after the less injured, who bypass EMS triage and go directly to the closest hospitals
- Predominant injuries involve multiple penetrating injuries and blunt trauma
- Explosions in confined spaces (buildings, large vehicles, mines) and/or structural collapse are associated with greater morbidity and mortality
- Primary blast injuries in survivors are predominantly seen in confined space explosions
- Repeatedly examine and assess patients exposed to a blast
• All bomb events have the potential for chemical and/or radiological contamination
• Triage and lifesaving procedures should never be delayed because of the possibility of radioactive contamination of the victim; the risk of exposure to caregivers is small
• Universal precautions effectively protect against radiological secondary contamination of first responders and first receivers
• For those with injuries resulting in no intact skin or mucous membrane exposure, hepatitis B immunization (within 7 days) and age-appropriate tetanus toxoid vaccine (if not current)

Blast Injuries
• Primary: Injury from over-pressurization force (blast wave) impacting the body surface
 o TM rupture, pulmonary damage and air embolization, hollow viscous injury
• Secondary: Injury from projectiles (bomb fragments, flying debris)
 o Penetrating trauma, fragmentation injuries, blunt trauma
• Tertiary: Injuries from displacement of victim by the blast wind
 o Blunt/penetrating trauma, fractures and traumatic amputations
• Quaternary: All other injuries from the blast
 o Crush injuries, burns, asphyxia, toxic exposures, exacerbations of chronic illness

Primary Blast Injury
• **Lung Injury**
 - Signs usually present at time of initial evaluation, but may be delayed up to 48 hrs
 - Reported to be more common in patients with skull fractures, >10% BSA burns, and penetrating injury to the head or torso
 - Varies from scattered petechiae to confluent hemorrhages
 - Suspect in anyone with dyspnea, cough, hemoptysis, or chest pain following blast
 - CXR: “butterfly” pattern
 - High flow O2 sufficient to prevent hypoxemia via NRB mask, CPAP, or ET tube
 - Fluid management similar to pulmonary contusion; ensure tissue perfusion but avoid volume overload
 - Endotracheal intubation for massive hemoptysis, impending airway compromise or respiratory failure
 - Consider selective bronchial intubation for significant air leaks or massive hemoptysis
 - Positive pressure may risk alveolar rupture or air embolism
 - Prompt decompression for clinical evidence of pneumothorax or hemothorax
 - Consider prophylactic chest tube before general anesthesia or air transport
- Air embolism can present as stroke, MI, acute abdomen, blindness, deafness, spinal cord injury, claudication
 - High flow O2; prone, semi-left lateral, or left lateral position
 - Consider transfer for hyperbaric O2 therapy
- Abdominal Injury
 - Gas-filled structures most vulnerable (esp. colon)
 - Bowel perforation, hemorrhage (small petechiae to large hematomas), mesenteric shear injuries, solid organ lacerations, and testicular rupture
 - Suspect in anyone with abdominal pain, nausea, vomiting, hematemesis, rectal pain, tenesmus, testicular pain, unexplained hypovolemia
 - Clinical signs can be initially subtle until acute abdomen or sepsis is advanced
- Ear Injury
 - Tympanic membrane most common primary blast injury
 - Signs of ear injury usually evident on presentation (hearing loss, tinnitus, otalgia, vertigo, bleeding from external canal, otorrhea)

Other Injury
- Traumatic amputation of any limb is a marker for multi-system injuries
- Concussions are common and easily overlooked
- Consider delayed primary closure for grossly contaminated wounds, and assess tetanus immunization status
- Compartment syndrome, rhabdomyolysis, and acute renal failure are associated with structural collapse, prolonged extrication, severe burns, and some poisonings
- Consider possibility of exposure to inhaled toxins (CO, CN, MetHgb) in both industrial and terrorist explosions
- Significant percentage of survivors will have serious eye injuries

Disposition
- No definitive guidelines for observation, admission, or discharge
- Discharge decisions will also depend upon associated injuries
- Admit 2nd and 3rd trimester pregnancies for monitoring
- Close follow-up of wounds, head injury, eye, ear, and stress-related complaints
- Patients with ear injury may have tinnitus or deafness; communications and instructions may need to be written

This fact sheet is part of a series of materials developed by the Centers for Disease Control and Prevention (CDC) on blast injuries. For more information, visit CDC on the Web at: emergency.cdc.gov/BlastInjuries