The Integration of Genomics into Acute Care Psychiatry

Precision Medicine on the Inpatient Child and Adolescent Psychiatry Service

UC San Diego/Rady Children's Autism Research and Practice Seminar

Aaron D. Besterman, MD

Attending Psychiatrist, Child and Adolescent Psychiatry Service (CAPS), Rady Children's Hospital Clinical Investigator, Rady Children's Institute for Genomic Medicine Health Sciences Assistant Clinical Professor, UCSD Department of Psychiatry October 23, 2020

No Conflicts of Interest to Disclose

Overview

- I. Genetics of Autism and Other Neurodevelopmental Disorders
- II. Genetic Testing in Child and Adolescent Psychiatry: An Inpatient Experience
- III. Genetic Testing Implementation at RCHSD and RCIGM

I. Genetics of Autism and Other Neurodevelopmental Disorders

Neurodevelopmental Disorders (NDDs)

Autism Spectrum Disorders

- Social communication deficits
- Restrictive and repetitive behaviors, interests, activities

Global Developmental Delay

- Not reaching developmental milestones on time
- <5 years old</p>

Intellectual Disability

• Deficits in intellectual and adaptive functioning

(...and ADHD, Schizophrenia, Tourette Syndrome...)

Neurodevelopmental Disorders Are Largely Genetic Disorders

Human Genetic Variation Can Be Classified Multiple Ways

Frequency	Common	Rare
Inheritance	Inherited	De Novo
Location	Intronic (Regulatory)	Exonic/Intragenic (Gene Coding)
Size	SNV 1bp	Indel CNV -1000bp >1000bp

Rare, De Novo, Intragenic Variants May Have Largest *Individual* Contribution to Genetic Risk for NDDs

Frequency		Rare
Inheritance		De Novo
Location		Exonic/Intragenic (Gene Coding)
Size	SNV 1bp	CNV >1000bp

Pathogenic Copy Number Variants Are Detected in 15-20% of Individuals with NDDs

http://readingroom.mindspec.org/wp-content/genetics_CNV.jpg

Abnormality	ASD penetrance* (rate of ASD in carriers; %)	Neuropsychiatric pleiotropy [‡] (associated neuropsychiatric phenotypes)	Somatic pleiotropy [‡] (associated somatic phenotypes)
Del1q21.1	8 (REF. 129)	ID ¹³⁰ , ADHD ¹²⁹ , schizophrenia ¹³¹	Microcephaly ¹²⁹ , heart defect ¹³² , eye abnormalities ¹²⁹ , short stature ¹²⁹ , epilepsy ¹²⁹
Dup1q21.1	36 (REF. 133)	ID ¹³³ , schizophrenia ¹³³	Epilepsy ^{133,134} , macrocephaly ¹³³ , heart defect ¹³³
Del2q23.1	100 (REF. 135)	ID ¹³⁵ , ADHD ¹³⁵ , language disorder ¹³⁶ , motor delay ¹³⁶	Epilepsy ^{135,136} , obesity ¹³⁶ , brachycephaly ¹³⁶ , microcephaly ¹³⁶ , short stature ¹³⁶
Del2q37	25–42 (REFS 137,138)	ID ¹³⁹ , ADHD ¹³⁸	Epilepsy ¹³⁷ , short stature ¹³⁹ , obesity ¹³⁹ , heart defect ¹³⁷
Del3q29	27 (REFS 63,140)	ID ⁶³ , speech delay ⁶³ , language disorder ⁶³ , anxiety disorders ⁶³ , schizophrenia ⁶³ , bipolar disorder ⁶³	Gastrointestinal problems ⁶³ , heart defect ⁶³ , feeding problems ⁶³ , recurrent ear infections ⁶³ , abnormal dentition ⁶³
Del5q14.3	43 (REFS 141,142)	ID ¹⁴¹ , absent speech ¹⁴¹	Epilepsy ^{141,142} , capillary malformation ^{141,142}
Dup7q11.23	41 (REF. 143)	ID ¹⁴³ , ADHD ^{144,145} , anxiety disorders ^{145,146} , oppositional defiant disorders ¹⁴⁵ , speech delay ^{134,145}	Epilepsy ¹⁴³ , macrocephaly ¹⁴⁵ , brachycephaly ¹⁴⁷ , dilatation of ascending aorta ^{145,147} , patent ductus arteriosus ¹⁴⁷ , chronic obstipation ¹⁴⁷ , kidney abnormalities ¹⁴⁷
Del8p23	Unknown	ID ¹⁴⁸ , ADHD ¹³⁸	Heart defect ¹⁴⁸ , congenital diaphragmatic hernia ¹⁴⁸
Dup15q11-q13	69 (REF. 149)	ID ¹⁵⁰ , ADHD ¹⁵¹	Epilepsy ^{134,152} , heart defect ¹³⁴ , muscle hypotonia ¹⁵³ , short stature ¹⁵³

Vorstman et al. Nat Rev Genet. 2017

ARTICLE

Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies

The American Journal of Human Genetics 86, 749-764, May 14, 2010

Over 100 Genes Are Now Associated with ASD and NDDs through Whole Exome Sequencing (SNVs)

	ASD predominant (ASD _P) 53 genes			ASD & NDD (ASD _{NDD}) 49 genes		
Gene expression regulation 58 genes	ASH1L CELF4 CHD8 DEAF1 EIF3G ELAVL3 HDLBP KDM5B KDM6B	KMT2C KMT2E KMT5B LDB1 MKX NCOA1 PAX5 PHF2 PHF21A	RFX3 RORB SATB1 SKI SMARCC2 TBR1 ZMYND8	ADNP ANKRD1 ARID1B ASXL3 BCL11A CHD2 CREBBP CTNNB1	IRF2BPL MBD5 MED13L MYT1L NACC1 NSD1 NR3C2 PHF12	SETD5 SIN3A TBL1XR1 TCF4 TCF7L2 TCF20 TLK2
Neuronal communication 24 genes	ANK2 AP2S1 CACNA2D3 DIP2A DSCAM	GRIA2 KONMA1 NRXN1 PTEN PPP1R9B	SON1A SHANK2 SHANK3	DNMT3A FOXP1 FOXP2 CACNA1	PPP2R5D RAI1	TRIP12 VEZF1 WAC SLC6A1
Cytoskeleton 9 genes	CORO1A DPYSL2	GFAP MAP1A	PTK7 SPAST	GABRB2 GABRB3 GRIN2B	LRRC4C PRR12 SCN2A	STXBP1 SYNGAP1
Other 11 genes	GIGYF1 KIAA0232 NUP155	PPP5C SRPRA TEK	TM9SF4 TRIM23 UBR1	DYNC1H GNAI1	1 DYRK1A HECTD4	TAOK1

 I11 June 2019
 SYSTEMATIC REVIEW
 Genetics in Medicine

 Open
 Image: Comparison of the second secon

and the NDD Exome Scoping Review Work Group

36% Diagnostic Yield

Why Do We Order Genetic Tests for NDDs?

- ✓ Answer the question "why?"
 - Diagnostic clarity (End the diagnostic odyssey)
 - Increase empowerment
- \checkmark Allow for medical monitoring and prognosis
- ✓ Provide reproductive counseling
- ✓ Guide medical and ?psychiatric care
- ✓ Connect families with community support
- ✓ Allow families to partake in advocacy
- ✓ Identify relevant research studies to families

We are Failing to Act on these Guidelines

Daniel Moreno-De-Luca, MD, MSc Brian C. Kavanaugh, PsyD Carrie R. Best, MPH Stephen J. Sheinkopf, PhD Chanika Phornphutkul, MD Eric M. Morrow, MD, PhD

JAMA Psychiatry September 2020 Volume 77, Number 9

II. Genetic Testing in Child and Adolescent Psychiatry: An Inpatient Experience

Why Genetic Testing on an Inpatient CAP Service? It All Began as a Fellow...

- Clinical observation: many very sick children with NDDs on our service with no history of genetic testing
 - Ex: 10yo M with mild ID, severe TS, ADHD, OCD, and situs inversus
- Number of patients with NDDs on our inpatient service in 2016: **125**
- Number of patients who received <u>any</u> genetic testing on our inpatient service in 2016: **2**

Multi-level Support and Buy-in are Vital

Mark DeAntonio

Mike Enenbach

Inpatient Child Psychiatry

Sheryl Kataoka Training Director

Julian Martinez Medical Genetics

Naghmeh DorraniS Genetic Counseling

Hane Lee Bioinformatics

ve

What Should a Psychiatrist Know About Genetics?:

Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics

John I. Nurnberger Jr, MD,PhD^{a,*}, Jehannine Austin, PhD^b, Wade H. Berrettini, MD,PhD^c, Aaron D. Besterman, MD^d, Lynn E. DeLisi, MD^e, Dorothy E. Grice, MD^f, James L. Kennedy, MD^g, Daniel Moreno-De-Luca, MD^h, James B. Potash, MD,MPHⁱ, David A. Ross, MD,PhD^j, Thomas G. Schulze, MD^k, and Gwyneth Zai, MD,PhD^g

J Clin Psychiatry 80:1, January/February 2019

- ✓ Understand
- ✓ Counsel
- ✓ Consent
- ✓ Order
- ✓ Return Results
- ✓ Consult
- ✓ Refer

Genetic Testing Indications

Absolute Indications

- Intellectual Disability
- Developmental Delay
- Autism Spectrum Disorders
- Childhood-Onset Schizophrenia

Relative Indications

- Childhood Epilepsy
- Severe Psychopathology + Congenital Malformations
- High family burden of severe psychopathology

Inpatient Genetic Testing Study

Results of Retrospective Analysis

Eligible Patient Overview

- ✓ 125 patients pre-education,
- ✓ 197 patients post-education
- ✓ Age Range: 6-17yo
- ✓ Male: 78.3%
- ✓ Tested: ID: 39.1%, ASD 69.6%, COS 8.7%

Genetic Testing Rates

- ✓ Pre-Intervention: 2/125 (1.6%)
- ✓ Post-Intervention: 21/197 (10.7%)

Diagnostic Yield (FX: 18, CMA: 23, WES: 6)

- ✓ Pathogenic/Likely Pathogenic: 1/23 (4.3%)
- ✓ Variant of Unknown Significance: 8/23 (34.8%)

The Feasibility and Outcomes of Genetic Testing for Autism and Neurodevelopmental Disorders on an Inpatient Child and Adolescent Psychiatry Service

Aaron D. Besterman ^(b), Joshua Sadik, Michael J. Enenbach, Fabiola Quintero-Rivera ^(b), Mark DeAntonio, and Julian A. Martinez-Agosto ^(b)

Autism Research 13: 1450–1464, 2020

Interpreting and Addressing Low Yield

- Small sample size
- "Unexpected" phenotype (Impulse Control Disorders)
- Poorly studied patient population (High VUS rate)
- High common variant contribution (family history)
- Only 1/4 of patients received WES

Outpatient Follow-up Was a Challenge

Unexpected Benefit to Inpatient Testing

- 39.1% of patients who received testing on inpatient were URMs
- 7.7% of patients who received testing elsewhere were URMs

Inpatient testing has the potential to increase access to genetic services for URMs

III. Genetic Testing Implementation in Child Psychiatry at RCHSD and RCIGM RCIGM Performs Whole Genome Sequencing (WGS), Which Can Detect Most Variants of Interest for NDD Diagnoses

Frequency				Rare	
Inheritance			D	e Novo	
Location	Intronic (Regulatory)		Exonic/Intragenic (Gene Coding)		
Size	SNV 1bp	Inde 1-1000		CNV >1000bp	

Rapid WGS Is Ideal for an Acute Care Setting

DIAGNOSTICS

Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

Carol Jean Saunders,^{1,2,3,4,5} Neil Andrew Miller,^{1,2,4} Sarah Elizabeth Soden,^{1,2,4} Darrell Lee Dinwiddie,^{1,2,3,4,5} Aaron Noll,¹ Noor Abu Alnadi,⁴ Nevene Andraws,³ Melanie LeAnn Patterson,^{1,3} Lisa Ann Krivohlavek,^{1,3} Joel Fellis,⁶ Sean Humphray,⁶ Peter Saffrey,⁶ Zoya Kingsbury,⁶ Jacqueline Claire Weir,⁶ Jason Betley,⁶ Russell James Grocock,⁶ Elliott Harrison Margulies,⁶ Emily Gwendolyn Farrow,¹ Michael Artman,^{2,4} Nicole Pauline Safina,^{1,4} Joshua Erin Petrikin,^{2,3} Kevin Peter Hall,⁶ Stephen Francis Kingsmore^{1,2,3,4,5†} www.ScienceTranslationalMedicine.org 3 October 2012 Vol 4 Issue 154 154ra135

Turn around time in 3-7 days!

Average length of stay for psychiatry inpatient: 3-7 days!

Josh E. Petrikin^{1,2,3}, Julie A. Cakici^{10,4}, Michelle M. Clark⁴, Laurel K. Willig^{1,2,3}, Nathaly M. Sweeney^{4,5}, Emily G. Farrow^{1,2,3}, Carol J. Saunders^{1,3,6}, Isabelle Thiffault^{1,3,6}, Neil A. Miller¹, Lee Zellmer¹, Suzanne M. Herd¹, Anne M. Holmes², Serge Batalov⁴, Narayanan Veeraraghavan⁴, Laurie D. Smith^{1,3,7}, David P. Dimmock⁴, J. Steven Leeder^{2,3} and Stephen F. Kingsmore⁴

npj Genomic Medicine (2018) 6

RCHSD and RCIGM Provide a Unique Environment for Success

Traditional Barriers to Genetic Testing for NDDs

- 1. Diagnostic Odyssey
 - Step-wise outpatient testing/authorization
 - Many visits, many years
- 2. Outpatient facilities are not equipped to provide blood draws for patients with severe agitation
- 3. Underrepresented minorities may have less access to genetic services for NDDs
- 4. High loss to follow-up with standard "slow" testing approaches
- 5. Difficult to access team of professionals with expertise in psychiatry + genetics to use results to inform clinical care

Inpatient rWGS Solution

- Can detect most variants of interest in 1 test
- 2. Trained, professional staff can safely draw blood samples
- 3. Any child who gets admitted and is eligible can get genetic testing as part of their medical work-up
- 4. Minimize loss to follow-up with rapid turnaround time
- 5. Explore impact of genetic test result on clinical care with input from RCIGM collaborators

Genomics can Guide Precision Psychiatric Care for Some Patients with NDDs

Smith-Magenis Syndrome

- 17p11.2 deletion or RAI1 mutation with inverted melatonin secretion and sleep cycle
- Treat with morning beta-blocker and evening melatonin

15q13.3 deletion syndrome

- ID syndrome with severe aggression and deleted α 7NChR
- Reduced aggression and psychotropic burden with galantamine

Additional Potential Benefits of rWGS on Inpatient CAP Service

- Improve family experience of hospitalization (e.g. everything is being done) and understanding of child's illness
- Prepare for dissemination into less acute areas of psychiatry and other indications (e.g. schizophrenia – diagnostic yield 5-10%)
- Educate psychiatry trainees in genomic medicine

Prospective, Observational Hybrid Clinical Effectiveness/Implementation Study

Thank You!

UCLA

- Families!
- Julian Martinez
- Mark DeAntonio
- Michael Enenbach

RCHSD/RCIGM

- Stephen Kingsmore
- Charlotte Hobbs
- Nicole Stadnick
- Greg Aarons

Funding and Support

- T32 UCLA Intercampus Medical Genetics Training Program
- Savant Fellowship in
 Developmental Neurogenetics
- AACAP Junior Investigator Award
- UCLA CART and IDDRC
- RCIGM