Burns

Pathophysiology

- 1. Cell damage and death causes vasoactive mediator release:
 - a. Histamine, thromboxane, cytokine
- 2. Increasing capillary permeability causes edema, third spacing and dehydration
- 3. Possible obstruction to circulation (compartment syndrome) and/or airway

Causes

- 1. Scalds
- 2. Fires
 - a. 85% of burn mortality
- 3. Chemical
- 4. Electrical

Estimation of Burn Percentage

- 1. < 15 years: Patients hand size used to measure burn is 1%
- 2. > 15 years: Rule of 9
 - a. Head 9%
 - i. Infants 18%, >1 year reduce 1%/year (until 9%)
 - b. Each arm 9%
 - c. Anterior trunk 18%
 - d. Posterior Trunk 18%
 - e. Perineum 1%
 - f. Each leg 18%
 - i. Infants 14%, >1yr add 1%/year (until 18%)
- 3. Rule of 9 Picture:

Estimation of Burn Size and Depth

- 1. 1st Degree
 - a. Epidermis is destroyed
 - b. Sunburn, with or without blisters

- c. Very painful
- 2. 2nd Degree
 - a. Dermis is destroyed
 - b. Very painful
- 3. 3rd Degree
 - a. Subcutaneous fat destroyed
 - b. Less painful
- 4. 4th Degree
 - a. Bone and other structures are destroyed
 - b. No pain

Estimation of Depth of Burn

- 1. The initial assessment of depth is unreliable
 - a. Never predict depth to parents
- 2. For the purpose of fluid replacement: mild superficial erythema can be ignored
 - a. Areas that are pink and blanch with pressure are usually superficial
 - b. Dark red, mottled or pale waxy areas are deep
 - c. Presence of pinprick sensation may help indicate superficial (as opposed to deep) burn

Grading of Burns

- 1. Minor: < 5% BSA (Body Surface Area)
- 2. Moderate: 5-15% BSA full thickness (may include special areas)
- 3. Severe: >15% BSA (95% of Burns = 50% mortality)
- 4. Special areas such as hands/fingers, feet/toes and perineum have small BSA but are considered moderate to severe because of potential disability

Management

- 1. Airway
 - a. Oxygen for all burn patients
 - b. Any respiratory complications consider PICU
 - c. Most swelling occurs in first 24 hours to 3 days
 - d. Clinical signs to watch for:
 - i. Hoarseness, stridor, cough, and visible redness of pharynx
 - ii. Overt respiratory distress or hypoxia
 - e. Consider early intubation for thermal injury to airway, face and neck, inhalation injury and central nervous system (CNS) dysfunction
 - f. For intubation use Vecuronium (no Succinylcholine due to possible high K+)
 - g. Children burnt in confined spaces may suffer carbon monoxide poisoning
 - i. Loss of consciousness, confusion or disorientation are likely signs

- ii. Give high concentration oxygen even if SaO2 is high (Carbon monoxide will bind with the hemoglobin causing a false SaO2 reading)
- iii. Consider carboxyhemoglobulin level
- iv. Consider hyperbaric oxygen
- 2. Fluid resuscitation and maintenance
 - a. Two large bore IV's (might need to be sutured)
 - b. Bolus with normal saline (NS) or lactated ringers (LR) to restore perfusion
 - i. Blood pressure might be high due to high systemic vascular resistance (SVR) but perfusion poor
 - ii. LR most often used because it has physiologic concentrations of Na+, K+, CL- & HCO3-
 - c. Albumin in the first 12 to 24 hours may leak into the interstitium and can worsen tissue edema
 - d. Goal is to normalize vital signs and maintain end organ perfusion thus improving capillary refill and urine output
 - e. First degree burns: use normal maintenance formula (tissue and fluid losses are minor)
 - f. Second and Third degree burns use Parkland Formula:
 - i. LR 4cc/Kg x % burned over 24hrs plus maintenance
 - ii. Give half of the volume in 8 hours
 - 1. Important: clock starts when burned occurred
 - iii. Give second half in 16 hours
- 3. Foley placement
 - a. Normal urine output > 1cc/kg
 - b. Teenagers > 30cc/hr
 - c. If urine output is low increase fluids
- 4. Pain control
 - a. IV use of morphine, fentanyl or ketamine
 - b. IM route not well absorbed
- 5. Wound control
 - a. Clean with sterile normal saline or sterile water and cover with non-adherent dressing
- 6. Asses neurovascular status of circumferential burns
 - a. Chest, limbs, fingers/toes
- 7. Keep patient warm
 - a. Cover with warm blankets
 - b. No ice packs- hypothermia causes more tissue injury
- 8. Chest X-ray
- 9. I-Stat on transport
- 10. Electrolytes, BUN, Creatinine
 - a. Low K+ needs to be supplemented
 - b. In compartment syndrome or excessive tissue burn: Rhabdomyolysis (skeletal muscle decompostion) can occur

causing a high K+, Phosphorus and CPK; low Ph and Ca+ are common

- i. NaHCo3 1meq/kg will reduce the Serum K+ and damage to kidneys
- ii. CaCl 10mg/kg will stabilize cardiac cell membrane and lower phosphorus
- 11. Tetanus booster should be given if tetanus is incomplete or if > 5 years have elapsed since last given
- 12. Transport to a Burn Center (UCSD)

Revised 8/03 Antonia Farrugia, BSN and Dr. Tania Drews